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Abstract

For a connected graph G = (V,E), a set S ⊆ E is called an edge-to-vertex geodetic set of G
if every vertex of G is either incident with an edge of S or lies on a geodesic joining some pair
of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is gev(G). Any
edge-to-vertex geodetic set of cardinality gev(G) is called an edge-to-vertex geodetic basis of G. A
subset T ⊆ S is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set
containing T . A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The
forcing edge-to-vertex geodetic number of S, denoted by fev(S), is the cardinality of a minimum
forcing subset of S. The upper forcing edge-to-vertex geodetic number of G, denoted by f+

ev(G), is
f+
ev(G) = max {fev(S)}, where the maximum is taken over all minimum edge-to-vertex geodetic

sets S in G. It is shown that the upper forcing edge-to-vertex geodetic number lies between 0 and
gev(G). Also, the upper forcing edge-to-vertex geodetic number of certain classes of graphs such as
cycle, tree, complete graph and complete bipartite graph are determined.

Keywords: edge-to-vertex geodetic number, forcing edge-to-vertex geodetic number, upper forcing
edge-to-vertex geodetic number.
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1 Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic definitions and terminol-
ogy we refer to [1]. For vertices u and v in a connected graph G, the distance d (u, v) is the length of a

shortest u− v path in G. A u− v path of length d (u, v) is called a u− v geodesic. A geodetic set of G
is a set S ⊆ V (G) such that every vertex of G is contained in a geodesic joining some pair of vertices of

G. The geodetic number g(G) of G is the minimum order of a geodetic set and any geodetic set of order
g(G) is called a geodetic basis of G. The geodetic number of a graph was introduced in [1] and further

studied in [5]. A set S ⊆ E(G) is called an edge-to-vertex geodetic set of G if every vertex of G is either
incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality

of an edge-to-vertex geodetic set of G is gev (G). Any edge-to-vertex geodetic set of cardinality gev (G)

is called an edge-to-vertex geodetic basis of G or a gev-set of G. The edge-to-vertex geodetic number

of a graph was introduced in [12] and further studied in [7]. A vertex v is an extreme vertex of a graph
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G if the subgraph induced by its neighbors is complete. An edge of a connected graph G is called an

extreme edge of G if one of its ends is an extreme vertex of G. For any edge e in a connected graph
G, the edge-to-edge eccentricity e3(e) of e is e3(e)= max {d(e, f) : f ∈ E(G)}. Any edge e for which

e3(e) is minimum is called an edge-to-edge central edge of G and the set of all edge-to-edge central
edges of G is the edge-to-edge center of G. The minimum eccentricity among the edges of G is the

edge-to-edge radius, rad G and the maximum eccentricity among the edges of G is the edge-to-edge

diameter, diam G of G. Two edges e and f are antipodal if d(e, f) = diam G or d(G). This concept

was studied in [10]. The forcing concept was first introduced and studied in minimum dominating sets
in [2] and the same in geodetic number was introduced and studied by Chartrand and Zhang in[3]. Then

the forcing concept is applied in various graph parameters viz. hull sets, matching’s, edge coverings and
Steiner sets in [ 4, 6, 9, 8, 11 ] by several authors. In this paper we study the upper forcing concept in

minimum edge-to-vertex geodetic set of a connected graph.

Throughout the paper G denotes a connected graph with at least three vertices . The following
theorems are used in the sequel.

Theorem 1.1 (12). Let G be a connected graph with size q. Then every end-edge of G belongs to every

edge-to-vertex geodetic set of G.

Theorem 1.2 (12). For the complete bipartite graph G = Kn,n(n ≥ 2), a set S of edges of G is a
minimum edge-to-vertex geodetic set if and only if S consists of n independent edges of G.

Theorem 1.3 (12). For the complete bipartite graph G = Km,n(2 ≤ m < n), a set S of edges of G is
a minimum edge-to-vertex geodetic set if and only if S consists of m − 1 independent edges of G and

n−m+ 1 adjacent edges of G.

Theorem 1.4 (12). For the complete graph G = Kp(p ≥ 4) with p even, a set S of edges of G is a

minimum edge-to-vertex geodetic set of G if and only if S consists of p
2 independent edges.

Theorem 1.5 (12). For the complete graph G = Kp(p ≥ 5) with p odd, a set S of edges of G is a
minimum edge-to-vertex geodetic set of G if and only if S consists of p−3

2 independent edges and two

adjacent edges of G.

2 The Forcing Edge-to-vertex Geodetic Number of a Graph

For each minimum edge-to-vertex geodetic set S in a connected graph G, there is always some sub-

set T of S such that S is the unique minimum edge-to-vertex geodetic set containing T . The maximum
of such subsets T of S is considered in this section.

Definition 2.1. Let G be a connected graph and S an edge-to-vertex geodetic set of G. A subset
T ⊆ S is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set con-

taining T . A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The
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forcing edge-to-vertex geodetic number of S, denoted by fev(S), is the cardinality of a minimum
forcing subset of S. The upper forcing edge-to-vertex geodetic number of G, denoted by f+

ev(G), is

f+
ev(G) = max {fev(S)}, where the maximum is taken over all minimum edge-to-vertex geodetic sets
S in G.

Example 2.2. For the graph G given in Figure 1, S = {v1v2, v5v6} is the unique minimum edge-to-
vertex geodetic set of G so that f+

ev(G) = 0. For the graph G given in Figure 2, S1 = {v1v2, v3v4, v3v5},

S2 = {v1v2, v3v4, v4v5} and S3 = {v1v2, v3v5, v4v5}, S4 = {v1v2, v3v4, v2v5}, S5 = {v1v2, v2v3, v4v5}
and S6 = {v1v2, v3v5, v2v4} are the only gev-sets of G, such that fev(S1) = fev(S2) = fev(S3) = 2,

and fev(S4) = fev(S5) = fev(S6) = 1 so that f+
ev(G) = max {fev(S)} = max {2, 2, 2, 1, 1, 1} = 2.

b b

b

b

b b

v1 v2

v3

v4

v5 v6

G

Figure 1

b

b

b

b b

v1

v2

v3

v4 v5
G

Figure 2

The next theorem follows immediately from the definition of the edge-to-vertex geodetic number and

the upper forcing minimum edge-to-vertex geodetic number of a connected graph G.

Theorem 2.3. For every connected graph G, 0 ≤ f+
ev(G) ≤ gev(G).
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Proof: Since every connected graph G has one or more minimum edge-to-vertex geodetic sets and
every minimum edge-to-vertex geodetic set contains at least two edges, it follows that f+

ev(G) ≥ 0.

Let S be a minimum edge-to-vertex geodetic set of G and T a forcing subset of S. By definition,
T ⊆ S. This implies that, the cardinality of T is less than or equal to the cardinality of S. That is

f+
ev(G) ≤ gev(G).

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G given in Figure 1, f+
ev(G) = 0 and

for the graph G = K3, f+
ev(G) = gev(G) = 2. Also, all the inequalities in the theorem are strict. For

the graph G given in Figure 2, f+
ev(G) = 2 and gev(G) = 3 so that 0 < f+

ev(G) < gev(G).

In the following, we characterize graphs G for which bounds in Theorem 2.3 attained and also graph
for which f+

ev(G) = 1.

Theorem 2.5. Let G be a connected graph. Then

(a)f+
ev(G) = 0 if and only if G has a unique minimum edge-to-vertex geodetic set.

(b)f+
ev(G) = 1 if and only if G has at least two minimum edge-to-vertex geodetic sets, in which one

element of each minimum edge-to-vertex geodetic set of G does not belong to any other minimum edge-
to-vertex geodetic set of G. and

(c)f+
ev(G) = gev(G) if and only if there exists a minimum edge-to-vertex geodetic set of G which does

not contain any proper forcing subsets.

Proof: (a) Let f+
ev(G) = 0 Then, by definition, fev(S) = 0 for some minimum edge-to-vertex geodetic

set S of G so that the empty set ϕ is the minimum forcing subset for S. Since the empty set ϕ is a subset

of every set, it follows that S is the unique minimum edge-to-vertex geodetic set of G. Conversely,
Let S be the unique minimum edge-to-vertex geodetic set of G. It is clear that fev(S) = 0 and hence

f+
ev(G) = 0.

(b) Let f+
ev(G) = 1. Then by Theorem 2.5(a), G has at least two minimum edge-to-vertex geodetic sets.

Also, since f+
ev(G) = 1,then by definition fev(S) = 1 for all S.Therefore there is a singleton subset

T of a minimum edge-to-vertex geodetic set S of G such that T is not a subset of any other minimum
edge-to-vertex geodetic sets of G. Thus one element of each S does not belong to any other minimum

edge-to-vertex geodetic set of G. Conversely, suppose that G has at least two minimum edge-to-vertex
geodetic sets, in which one element of each minimum edge-to-vertex geodetic set not containing any

other minimum edge-to-vertex geodetic sets. It is clear that fev(S) = 1 for all minimum edge-to-vertex
geodetic set S in G. Hence f+

ev(G) = max{fev(S)} = 1.

(c) Let f+
ev(G) = gev(G) . Then fev(S) = gev(G) for some minimum edge-to-vertex geodetic set S

in G. Since, q ≥ 2, gev(G) ≥ 2 and hence fev(S) ≥ 2. Then by Theorem 2.5(a), G has at least two

minimum edge-to-vertex geodetic sets and so the empty set ϕ is not a forcing subset for any minimum
edge-to-vertex geodetic set of G. Since fev(S) = gev(G) for some S, there exists some minimum

edge-to-vertex geodetic sets S such that no proper subset of S is a forcing subset of S. Thus there
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exists at least one minimum edge-to-vertex geodetic set of G which does not contain any proper forcing
subsets.Conversely, the data implies that G contains more than one minimum edge-to-vertex geodetic

sets such that at least one minimum edge-to-vertex geodetic set S other than S is a forcing subset for S.
Hence it follows that f+

ev(G) = gev(G).

Definition 2.6. An edge e of a connected graph G is an edge-to-vertex geodetic edge of G if e belongs

to every edge-to-vertex geodetic basis of G. If G has a unique edge-to-vertex geodetic basis S, then
every edge of S is an edge-to-vertex geodetic edge of G.

Example 2.7. For the graph G given in Figure 1, S = {v1v2, v5v6} is the unique minimum edge-to-

vertex geodetic set of G so that both the edges in S are edge-to-vertex geodetic edges of G.

Remark 2.8. By Theorem 1.1, each end edge of G is an edge-to-vertex geodetic edge of G. In fact there

are certain edge-to-vertex geodetic edges, which are not end edges as shown in the following example.

Example 2.9. For the graph G given in Figure 3, S1 = {v1v2, v6v7, v7v8}, S2 = {v1v2, v5v6, v7v8}
and S3 = {v1v2, v5v8, v6v7} are the only gev-sets of G so that every gev-set contains the edge v1v2.

Hence the edge v1v2 is the unique edge-to-vertex geodetic edge of G, which is not an end edge of G.
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Theorem 2.10. Let G be a connected graph and S a minimum edge-to-vertex geodetic set of G. Then
no edge-to-vertex geodetic edge of G belongs to any minimum forcing set of S.

Proof: Let S be a minimum edge-to-vertex geodetic set of G. Let T be a unique minimum forcing

subset of S. Let e be an edge-to-vertex geodetic edge of G. By the definition e ∈ S for all S. We show
that e /∈ T for all T contained in S. Suppose e is in any forcing subset T of S, then e does not belong

to any other minimum edge-to-vertex geodetic set of G. This implies that e is not an edge-to-vertex
geodetic edge of G. Thus e /∈ T for all T ⊂ S.

Theorem 2.11. Let G be a connected graph and W be the set of all edge-to-vertex geodetic edges of G.

Then f+
ev(G) ≤ gev(G)− |W |.

Proof: Let S be a minimum edge-to-vertex geodetic set of G. Then gev(G) = |S|, W ⊆ S and S

is the unique minimum edge-to-vertex geodetic set containing S − W . Thus f+
ev(G) ≤ |S − W | ≤

|S| − |W | = gev(G)− |W |.
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Corrolary 2.12. If G is a connected graph with k end edges, then f+
ev(G) ≤ gev(G)− k.

Proof: This follows from Theorems 1.1 and 2.11.

Remark 2.13. The bound in Theorem 2.11 is sharp. For the graph G given in Figure 3, S1 =

{v1v2, v6v7, v7v8}, S2 = {v1v2, v5v6, v7v8} and S3 = {v1v2, v5v8, v6v7} are the only gev-sets of G

such that fev(S1) = 2 and fev(S2) = fev(S3) = 1 so that f+
ev(G) = max{fev(S)} = 2 and gev(G) = 3.

Also, every gev-set contains the edge v1v2 so that |W | = 1 hence f+
ev(G) = gev(G) − |W |. Also, the

inequality in Theorem 2.11 can be strict. For the graph G given in Figure 4, S1 = {v1v2, v3v4, v5v6},
S2 = {v1v4, v2v3, v5v6} are the only two gev-sets of G such that fev(S1) = fev(S2) = 1 so that

f+
ev(G) = 1. Also gev(G) = 3. Here, v5v6 is the only edge-to-vertex geodetic edge of G and so
f+
ev(G) < gev(G)− |W |.
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In the following we determine the upper forcing edge-to-vertex geodetic number of some standard
graphs.

Theorem 2.14. For an even cycle Cp(p ≥ 4), a set S ⊆ E(G) is a minimum edge-to-vertex geodetic

set if and only if S consists of antipodal edges.

Proof: Let p = 2k and let Cp : v1, v2, v3, ..., vk, vk+1, ..., v2k, v1 be the cycle. Then the edges v1v2

and vk+1vk+2 are antipodal edges. Let S = {v1v2, vk+1vk+2}. Clearly, S is a minimum edge-to-

vertex geodetic set of Cp. Conversely, let S be a minimum edge-to-vertex geodetic set of Cp. Then
gev(Cp) = |S|. Let S

′
be any set of pair of antipodal edges of Cp. Then as in the first part of this

theorem, S
′

is a minimum edge-to-vertex geodetic set of Cp. Hence |S′ | = |S|. Thus S = {uv, xy}.
If uv and xy are not antipodal, then any vertex that is not on the uv − xy geodesic does not lie on the

uv − xy geodesic. Thus S is not a minimum edge-to-vertex geodetic set, which is a contradiction.

Theorem 2.15. For an even cycle Cp(p ≥ 4), f+
ev(Cp) = 1.
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Proof: If p is even, then by Theorem 2.14, every minimum edge-to-vertex geodetic set of Cp consists
of pair of antipodal edges. Hence Cp has p/2 independent minimum edge-to-vertex geodetic sets and

it is clear that each singleton set is the minimum forcing set for exactly one minimum edge-to-vertex
geodetic set of Cp. Hence it follows from Theorem 2.5 (a) and (b) that f+

ev(Cp) = 1.

Theorem 2.16. For an odd cycle Cp(p > 5), f+
ev(Cp) = 3.

Proof: Let p be odd. Let p = 2n + 1, n = 2, 3, .... Let the cycle be Cp : v1, v2, v3, ..., v2n+1, v1.

If S = {uv, xy} is any set of two edges of Cp, then no edge of the uv − xy longest path lies on the

uv − xy geodesic in Cp and so no two element subset of Cp is an edge-to-vertex geodetic set of Cp.
Now, it is clear that the sets S1 = {v1v2, vn+1vn+2, v2nv2n+1}, S2 = {v1v2, vn+1vn+2, v2n+1v1}, S3 =

{v2v3, vn+2vn+3, v2n+1v1},..., S2n = {vnvn+1, v2nv2n+1, vn−1vn}, S2n+1 = {vn+1vn+2, v2n+1v1, vn−1vn}
are the minimum edge-to-vertex geodetic sets of Cp. (Note that there are more minimum edge-to-vertex

geodetic sets of Cp, for example S = {vn+2vn+3, v1v2, vnvn+1} is a minimum edge-to-vertex geodetic

set different from these). It is clear from the minimum edge-to-vertex geodetic sets Si (1 ≤ i ≤ 2n+ 1)

that each {vivi+1} (1 ≤ i ≤ 2n) and {v2n+1v1} is a subset of more than one minimum edge-to-vertex

geodetic set Si(1 ≤ i ≤ 2n+1). Hence it follows from Theorem 2.5 (b) and (c) that f+
ev(Cp) ≤ 3. Since

S2 is the unique minimum edge-to-vertex geodetic set containing T = {v1v2, v2n+1v1}, it follows that

fev(S2) = 2. But it is easily verified that the two element subsets of S1 are contained in more than one
minimum edge-to-vertex geodetic set Si(1 ≤ i ≤ 2n+ 1) so that fev(S1) ̸= 2 and hence fev(S1) = 3.

Thus f+
ev(Cp) = 3.

Theorem 2.17. For the complete bipartite graph G = Kn,n(n ≥ 2), f+
ev(G) = n− 1.

Proof: Let X = {u1, u2, ...un} and Y = {v1, v2, ...vm} be a partition of G. Let S be a minimum edge-

to-vertex geodetic set of G. Then by Theorem 1.2, every element of S are independent and |S| = n. We
show that f+

ev(G) = n− 1.

Case(i): Suppose that f+
ev(G) ≤ n − 2. Then there exists a forcing subset T of S such that S is

the unique minimum edge-to-vertex geodetic set of G containing T and |T | ≤ n − 2 . Hence there

exists at least two edges uivj , ulvm ∈ S such that uivj , ulvm /∈ T and i ̸= l, j ̸= m. Then S1 =

S − {uivj , ulvm} ∪ {uivm, ulvj} is a set of n independent edges of G. By Theorem 1.2, S1 is a

minimum edge-to-vertex geodetic set of G which is a contradiction to T is a forcing subset of S. Hence
f+
ev(G) ≤ n− 2 is not possible.

Case(ii): Suppose that f+
ev(G) > n − 1. By Theorem 2.5(c), f+

ev(G) = n. Then there exists a forcing

subset T of S such that S is the unique minimum edge-to-vertex geodetic set of G containing T and
|T | = n. Hence all the proper subsets of S having a single element, two elements, three elements,...,

n− 1 elements are contained in more than one minimum edge-to-vertex geodetic sets of G. Let F be a
proper subset of S with cardinality n − 1. Let S1 and S2 be the two minimum edge-to-vertex geodetic

sets of G containing F . Since S1 and S2 have n− 1 elements as common, the other nth element of S1



36 S. Sujitha

and S2 is also same. Thus we get more than one minimum edge-to-vertex geodetic set with the same

n independent edges, which is a contradiction to T is a forcing subset of S. Hence f+
ev(G) = n is not

possible. Thus f+
ev(G) = n− 1.

Theorem 2.18. For the complete bipartite graph G = Km,n(2 ≤ m < n), f+
ev(G) = n− 1.

Proof: Let X = {u1, u2, ...un} and Y = {v1, v2, ...vm} be a partition of G. Let S be a minimum edge-
to-vertex geodetic set of G. Then by Theorem 1.3, S = S1∪S2, where S1 consists of m−1 independent

edges and S2 consists of n−m+ 1 adjacent edges and |S| = n. We show that f+
ev(G) = n− 1.

Case(i): Suppose that f+
ev(G) ≤ n − 2. Then there exists a forcing subset T of S such that S is the

unique minimum edge-to-vertex geodetic set of G containing T and |T | ≤ n− 2. Hence there exists at
least two edges x, y ∈ S such that x, y /∈ T . Let us assume that S2 = {ukvl1, ukvl2, ..., ukvln−m+1}.

Suppose that x, y ∈ S1. Then x = uivj and y = ulvm such that i ̸= l and j ̸= m. Now, S3 =

S − {x, y} ∪ {uivm, ulvj} consists of m − 1 independent edges and n − m + 1 adjacent edges of

G and also containing T . By Theorem 1.3, S3 is a minimum edge-to-vertex geodetic set of G, which
is a contradiction to T is a forcing subset of G. Suppose that x, y ∈ S2. Let x = ukvl1 and y =

ukvl2. Let uivj be an edge of S1. Now, join the vertices vl2, vl3, ..., vln−m+1 to ui . Now S4 =

S1 − {uivj} ∪ {ukvl1} ∪ {uivj , uivl2, uivl3, ..., uivln−m+1} consists of m − 1 independent edges and

n − m + 1 adjacent edges of G. By Theorem 1.3, S4 is a minimum edge-to-vertex geodetic set of G
containing T , which is a contradiction. Suppose that x ∈ S1 and y ∈ S2. Let x = uivj and y = ukvl1.

S5 = S1 − {uivj} ∪ {uivl1} ∪ {ukvj , ukvl2, ukvl3, ..., uivln−m+1} consists of m − 1 independent
edges and n − m + 1 adjacent edges of G and also containing T . By Theorem 1.3, S5 is a minimum

edge-to-vertex geodetic set of G, which is a contradiction to that T is a forcing subset of G. Hence
f+
ev(G) ≤ n− 2 is not possible.

Case(ii): Suppose that f+
ev(G) > n − 1. This implies that, by Theorem 2.5(c), f+

ev(G) = n. Then
there exists a forcing subset T of S such that S is the unique minimum edge-to-vertex geodetic set of G

containing T and |T | = n. Hence all the proper subsets of S containing a single element, two elements,
three elements,..., n − 1 elements are contained in more than one minimum edge-to-vertex geodetic

sets of G. Consider a proper subset F of cardinality n − 1( m − 2 independent edges and n −m + 1

adjacent edges). Since f+
ev(G) = n , it is clear that the proper subset F lies more than one minimum

edge-to-vertex geodetic sets of G, say S1 and S2. Now S1 and S2 have n − 1 elements in common.
This implies that the other nth independent edge of S1 and S2 is also same. Thus we get more than one

minimum edge-to-vertex geodetic set of G with the same n independent edges which is a contradiction
to that T is a forcing subset of S. Hence f+

ev(G) = n− 1.

Theorem 2.19. For the complete graph G = Kp(p ≥ 4) with p even, f+
ev(G) = P−2

2 .

Proof: The proof is similar to the proof of Theorem 2.17.

Theorem 2.20. For the complete graph G = Kp(p ≥ 5) with p odd, f+
ev(G) = P−1

2 .
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Proof: The proof is similar to the proof of Theorem 2.18.

Theorem 2.21. For a non trivial tree of size q ≥ 2, f+
ev(G) = 0.

Proof: Let G be a tree of size q. Then by Theorem 1.1, every pendent edge of G belongs to every edge-
to-vertex geodetic set of G. But it is clear that, in a tree, the set of all pendent edges of G is the unique

minimum edge-to-vertex geodetic set of G. Now, it follows from Theorem 2.5(a) that f+
ev(G) = 0.

Theorem 2.22. For a star G = K1,q, f+
ev(G) = 0.

Proof: This follows from Theorem 2.21.
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