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Abstract

For a connected graph G = (V, E), aset S C FE is called an edge-to-vertex geodetic set of G
if every vertex of G is either incident with an edge of S or lies on a geodesic joining some pair
of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is g, (G). Any
edge-to-vertex geodetic set of cardinality g., (G) is called an edge-to-vertex geodetic basis of G. A
subset ' C S is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set
containing 7". A forcing subset for S of minimum cardinality is a minimum forcing subset of .S. The
Sorcing edge-to-vertex geodetic number of S, denoted by f.,(.5), is the cardinality of a minimum
forcing subset of S. The upper forcing edge-to-vertex geodetic number of G, denoted by ff (G), is

T (G) = maz { fer(S)}, where the maximum is taken over all minimum edge-to-vertex geodetic

sets S in G. It is shown that the upper forcing edge-to-vertex geodetic number lies between 0 and
Jev (G). Also, the upper forcing edge-to-vertex geodetic number of certain classes of graphs such as

cycle, tree, complete graph and complete bipartite graph are determined.

Keywords: edge-to-vertex geodetic number, forcing edge-to-vertex geodetic number, upper forcing
edge-to-vertex geodetic number.
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1 Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple
edges. The order and size of (G are denoted by p and q respectively. For basic definitions and terminol-
ogy we refer to [1]. For vertices u and v in a connected graph G, the distance d (u,v) is the length of a
shortest u — v path in G. A u — v path of length d (u, v) is called a u — v geodesic. A geodetic set of G
isaset S C V(G) such that every vertex of G is contained in a geodesic joining some pair of vertices of
G. The geodetic number g(G) of G is the minimum order of a geodetic set and any geodetic set of order
9(Q) is called a geodetic basis of G. The geodetic number of a graph was introduced in [1] and further
studied in [5]. A set S C E(G) is called an edge-to-vertex geodetic set of G if every vertex of G is either
incident with an edge of S or lies on a geodesic joining a pair of edges of .S. The minimum cardinality
of an edge-to-vertex geodetic set of G is ge, (G). Any edge-to-vertex geodetic set of cardinality ge, (G)
is called an edge-to-vertex geodetic basis of G or a ge,-set of G. The edge-to-vertex geodetic number

of a graph was introduced in [12] and further studied in [7]. A vertex v is an extreme vertex of a graph
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G if the subgraph induced by its neighbors is complete. An edge of a connected graph G is called an
extreme edge of G if one of its ends is an extreme vertex of G. For any edge e in a connected graph
G, the edge-to-edge eccentricity e3(e) of e is e3(e)=max {d(e, f) : f € E(G)}. Any edge e for which
es(e) is minimum is called an edge-to-edge central edge of G and the set of all edge-to-edge central
edges of G is the edge-to-edge center of G. The minimum eccentricity among the edges of G is the
edge-to-edge radius, rad G and the maximum eccentricity among the edges of G is the edge-to-edge
diameter, diam G of G. Two edges e and f are antipodal if d(e, f) = diam G or d(G). This concept
was studied in [10]. The forcing concept was first introduced and studied in minimum dominating sets
in [2] and the same in geodetic number was introduced and studied by Chartrand and Zhang in[3]. Then
the forcing concept is applied in various graph parameters viz. hull sets, matching’s, edge coverings and
Steiner sets in [ 4, 6, 9, 8, 11 ] by several authors. In this paper we study the upper forcing concept in
minimum edge-to-vertex geodetic set of a connected graph.

Throughout the paper G denotes a connected graph with at least three vertices . The following

theorems are used in the sequel.

Theorem 1.1 (12). Let GG be a connected graph with size q. Then every end-edge of GG belongs to every

edge-to-vertex geodetic set of G.

Theorem 1.2 (12). For the complete bipartite graph G = K,, ,(n > 2), a set S of edges of G is a

minimum edge-to-vertex geodetic set if and only if S consists of n independent edges of G.

Theorem 1.3 (12). For the complete bipartite graph G = K, (2 < m < n), aset S of edges of G is
a minimum edge-to-vertex geodetic set if and only if S consists of m — 1 independent edges of GG and

n —m + 1 adjacent edges of G.

Theorem 1.4 (12). For the complete graph G = K,(p > 4) with p even, a set S of edges of G is a

minimum edge-to-vertex geodetic set of G if and only if S consists of £ independent edges.

Theorem 1.5 (12). For the complete graph G = K,(p > 5) with p odd, a set .S of edges of G is a
minimum edge-to-vertex geodetic set of GG if and only if S consists of ]%3 independent edges and two

adjacent edges of G.

2 The Forcing Edge-to-vertex Geodetic Number of a Graph

For each minimum edge-to-vertex geodetic set .S in a connected graph G, there is always some sub-
set T" of S such that S is the unique minimum edge-to-vertex geodetic set containing 7. The maximum

of such subsets 7" of S is considered in this section.

Definition 2.1. Let G be a connected graph and S an edge-to-vertex geodetic set of G. A subset
T C S is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set con-

taining 7. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The
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forcing edge-to-vertex geodetic number of S, denoted by f.,(5), is the cardinality of a minimum
forcing subset of S. The upper forcing edge-to-vertex geodetic number of G, denoted by f.f (G), is

I (Q) = maz { fer(S)}, where the maximum is taken over all minimum edge-to-vertex geodetic sets

Sin G.

Example 2.2. For the graph G given in Figure 1, S = {viv2, v5v6} is the unique minimum edge-to-
vertex geodetic set of G so that f.f (G) = 0. For the graph G given in Figure 2, S1 = {vjvs, v3v4, v305},
Sy = {v1v2, V304, v4v5} and Sg = {viva, V3Vs, V4Us }, Sy = {v1v2, V3U4, VoV5 }, S5 = {V1v2, Vovs, V45 }
and Sg = {v1v2,v3V5, vov4} are the only ge,-sets of G, such that fe,(S1) = fer(S2) = fer(S3) = 2,
and fep(S1) = fev(S5) = feu(Se) = 1 so that f.f(G) = maz {fer(S)} = maz {2,2,2,1,1,1} = 2.
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The next theorem follows immediately from the definition of the edge-to-vertex geodetic number and

the upper forcing minimum edge-to-vertex geodetic number of a connected graph G.

Theorem 2.3. For every connected graph G, 0 < ff (G) < geo(G).
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Proof: Since every connected graph G has one or more minimum edge-to-vertex geodetic sets and
every minimum edge-to-vertex geodetic set contains at least two edges, it follows that f} (G) > 0.
Let S be a minimum edge-to-vertex geodetic set of G and 1" a forcing subset of S. By definition,
T C S. This implies that, the cardinality of 7 is less than or equal to the cardinality of .S. That is

2(G) < geo(G). u

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G given in Figure 1, f. (G) = 0 and
for the graph G = K3, f1(G) = gep(G) = 2. Also, all the inequalities in the theorem are strict. For
the graph G given in Figure 2, ff (G) = 2 and ge,(G) = 3 so that 0 < £ (G) < gen(G).

In the following, we characterize graphs G for which bounds in Theorem 2.3 attained and also graph
for which f(G) = 1.

Theorem 2.5. Let GG be a connected graph. Then

(a) f1(G) = 0 if and only if G has a unique minimum edge-to-vertex geodetic set.

(b)f4,(G) = 1 if and only if G has at least two minimum edge-to-vertex geodetic sets, in which one
element of each minimum edge-to-vertex geodetic set of G does not belong to any other minimum edge-
to-vertex geodetic set of G. and

() f4(G) = gey(G) if and only if there exists a minimum edge-to-vertex geodetic set of G' which does

not contain any proper forcing subsets.

Proof: (a) Let £, (G) = 0 Then, by definition, f.,(S) = 0 for some minimum edge-to-vertex geodetic
set S of GG so that the empty set ¢ is the minimum forcing subset for .S. Since the empty set ¢ is a subset
of every set, it follows that .S is the unique minimum edge-to-vertex geodetic set of G. Conversely,
Let S be the unique minimum edge-to-vertex geodetic set of G. It is clear that f.,(S) = 0 and hence
+(G) =0.

(b) Let f1(G) = 1. Then by Theorem 2.5(a), G has at least two minimum edge-to-vertex geodetic sets.
Also, since ff(G) = 1,then by definition f,,(S) = 1 for all S.Therefore there is a singleton subset
T of a minimum edge-to-vertex geodetic set S of G such that 7" is not a subset of any other minimum
edge-to-vertex geodetic sets of (G. Thus one element of each S does not belong to any other minimum
edge-to-vertex geodetic set of G. Conversely, suppose that G has at least two minimum edge-to-vertex
geodetic sets, in which one element of each minimum edge-to-vertex geodetic set not containing any
other minimum edge-to-vertex geodetic sets. It is clear that f.,(.S) = 1 for all minimum edge-to-vertex
geodetic set S in G. Hence f,(G) = max{fe,(S)} = 1.

(c) Let f(G) = gew(GQ) . Then fe,(S) = gen(G) for some minimum edge-to-vertex geodetic set S
in G. Since, ¢ > 2, gep(G) > 2 and hence fe,(S) > 2. Then by Theorem 2.5(a), G has at least two
minimum edge-to-vertex geodetic sets and so the empty set ¢ is not a forcing subset for any minimum
edge-to-vertex geodetic set of G. Since fe,(S) = gev(G) for some S, there exists some minimum

edge-to-vertex geodetic sets .S such that no proper subset of S is a forcing subset of S. Thus there
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exists at least one minimum edge-to-vertex geodetic set of G which does not contain any proper forcing
subsets.Conversely, the data implies that G contains more than one minimum edge-to-vertex geodetic
sets such that at least one minimum edge-to-vertex geodetic set S other than S is a forcing subset for .S.
Hence it follows that [} (G) = geo (G). [

Definition 2.6. An edge e of a connected graph G is an edge-to-vertex geodetic edge of G if e belongs
to every edge-to-vertex geodetic basis of G. If G has a unique edge-to-vertex geodetic basis .5, then

every edge of S is an edge-to-vertex geodetic edge of G.

Example 2.7. For the graph G given in Figure 1, S = {vjva, v5v6} is the unique minimum edge-to-
vertex geodetic set of GG so that both the edges in .S are edge-to-vertex geodetic edges of G.

Remark 2.8. By Theorem 1.1, each end edge of GG is an edge-to-vertex geodetic edge of GG. In fact there

are certain edge-to-vertex geodetic edges, which are not end edges as shown in the following example.

Example 2.9. For the graph G given in Figure 3, S; = {viv2, vgvy, v7v8}, S2 = {v1v2, vsv6, V7U8 }
and S3 = {v1va, v5Us, veu7 } are the only ge,-sets of G so that every ge,-set contains the edge v1ve.

Hence the edge vj vy is the unique edge-to-vertex geodetic edge of G, which is not an end edge of G.

V1 Ve
U3 V4 v v
G
V9 (%]
Figure 3

Theorem 2.10. Let GG be a connected graph and S a minimum edge-to-vertex geodetic set of G. Then

no edge-to-vertex geodetic edge of G belongs to any minimum forcing set of .S.

Proof: Let S be a minimum edge-to-vertex geodetic set of G. Let T" be a unique minimum forcing
subset of S. Let e be an edge-to-vertex geodetic edge of GG. By the definition ¢ € S for all S. We show
that e ¢ T for all T" contained in S. Suppose e is in any forcing subset 7" of .S, then e does not belong
to any other minimum edge-to-vertex geodetic set of G. This implies that e is not an edge-to-vertex
geodetic edge of G. Thus e ¢ T forall T C S. |

Theorem 2.11. Let G be a connected graph and W be the set of all edge-to-vertex geodetic edges of G.
Then f;,(G) < geu(G) — [W].

Proof: Let S be a minimum edge-to-vertex geodetic set of G. Then g.,(G) = |S|, W C S and S
is the unique minimum edge-to-vertex geodetic set containing S — W. Thus f} (G) < |[S — W| <
|S|_|W| :gev(G)_‘W|' n
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Corrolary 2.12. If G is a connected graph with k end edges, then [} (G) < gy (G) — k.

Proof: This follows from Theorems 1.1 and 2.11. [ |

Remark 2.13. The bound in Theorem 2.11 is sharp. For the graph G given in Figure 3, 51 =
{v1va, vgv7, V708 }, So = {v1v2, VsV, v7Ug} and Sz = {v1ve, v5Us, vgU7} are the only ge,-sets of G
such that fu, (S1) = 2 and fu, (S2) = fuo(S5) = 1 50 that £5(G) = max{fu(S)} = 2 and g.,(G) = 3.
Also, every ge,-set contains the edge vyvy so that [W| = 1 hence [} (G) = geo(G) — |W]. Also, the
inequality in Theorem 2.11 can be strict. For the graph G given in Figure 4, S1 = {v1v2, v3v4, v506},
Sy = {wvyv4,v9v3, V506 } are the only two ge,-sets of G such that fe,,(S1) = fer(S2) = 1 so that
T(G) = 1. Also geo(G) = 3. Here, vsvg is the only edge-to-vertex geodetic edge of G and so

ev

[ (G) < geo(G) = [W.

U1

V2

V4

v3

G
Figure 4

In the following we determine the upper forcing edge-to-vertex geodetic number of some standard

graphs.

Theorem 2.14. For an even cycle Cp(p > 4), aset S C E(G) is a minimum edge-to-vertex geodetic

set if and only if S consists of antipodal edges.

Proof: Let p = 2k and let C), : v1,v2, 3, ..., Vg, Vj+1, --., V2, V1 be the cycle. Then the edges vivo
and vp11vE1o are antipodal edges. Let S = {vjvg,vkr1vk12}. Clearly, S is a minimum edge-to-
vertex geodetic set of C,. Conversely, let S be a minimum edge-to-vertex geodetic set of C,. Then
gev(Cp) = |S]. Let S" be any set of pair of antipodal edges of C),. Then as in the first part of this
theorem, S’ is a minimum edge-to-vertex geodetic set of C,,. Hence |S'| = |S|. Thus S = {uv, zy}.
If wv and zy are not antipodal, then any vertex that is not on the uv — zy geodesic does not lie on the

uv — xy geodesic. Thus S is not a minimum edge-to-vertex geodetic set, which is a contradiction. N

Theorem 2.15. For an even cycle Cy,(p > 4), f1(Cp) = 1.
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Proof: If p is even, then by Theorem 2.14, every minimum edge-to-vertex geodetic set of C), consists
of pair of antipodal edges. Hence C), has p/2 independent minimum edge-to-vertex geodetic sets and
it is clear that each singleton set is the minimum forcing set for exactly one minimum edge-to-vertex
geodetic set of C,. Hence it follows from Theorem 2.5 (a) and (b) that £}, (C)) = 1. [ |

Theorem 2.16. For an odd cycle Cy,(p > 5), f(C,) = 3.

Proof: Let p be odd. Letp = 2n + 1, n = 2,3,.... Let the cycle be C), : vi,v2,v3,...,V2p41, V1.
If S = {uv, zy} is any set of two edges of C,, then no edge of the uv — xy longest path lies on the
uv — xy geodesic in C), and so no two element subset of (), is an edge-to-vertex geodetic set of C,.
Now, it is clear that the sets S1 = {v1V2, Un41Un42, VonVon+1}, S2 = {V1V2, Unt1Unt2, Vo101 }, S3 =
{203, Vp+2Un+3, Van+101 Foeees S2n = {UnVn41, V2002041, Un—1Un }» S2nt1 = {Un+1Vn+2, V2n+101, Un—1Un }
are the minimum edge-to-vertex geodetic sets of C),. (Note that there are more minimum edge-to-vertex
geodetic sets of C), for example S = {v;, 4213, V1V2, VpUpy1} is @ minimum edge-to-vertex geodetic
set different from these). It is clear from the minimum edge-to-vertex geodetic sets .S; (1 < i < 2n+ 1)
that each {v;v; 11} (1 < i < 2n) and {va, 4101} is a subset of more than one minimum edge-to-vertex
geodetic set S;(1 < ¢ < 2n+1). Hence it follows from Theorem 2.5 (b) and (c) that f.},(C),) < 3. Since
Sy is the unique minimum edge-to-vertex geodetic set containing 7' = {v1vg, V2,411 }, it follows that
fev(S2) = 2. But it is easily verified that the two element subsets of S; are contained in more than one
minimum edge-to-vertex geodetic set S;(1 < ¢ < 2n + 1) so that fe,(S1) # 2 and hence fe,,(S1) = 3.
Thus f3,(Cp) = 3. n

Theorem 2.17. For the complete bipartite graph G = K, ,(n > 2), f1(G) =n — 1.

Proof: Let X = {uy,us,...u,} and Y = {vy, ve, ..., } be a partition of G. Let S be a minimum edge-
to-vertex geodetic set of G. Then by Theorem 1.2, every element of S are independent and |S| = n. We
show that f} (G) =n — 1.

Case(i): Suppose that f} (G) < n — 2. Then there exists a forcing subset T of S such that S is
the unique minimum edge-to-vertex geodetic set of G containing 7" and |T'| < n — 2 . Hence there
exists at least two edges w;v;, vy, € S such that wvj, wv, ¢ T and i # [,j # m. Then S; =
S — {uvj, wum } U {ujvm, wv;} is a set of n independent edges of G. By Theorem 1.2, S; is a
minimum edge-to-vertex geodetic set of G which is a contradiction to 7' is a forcing subset of S. Hence
[ (G) < n — 2is not possible.

Case(ii): Suppose that ff (G) > n — 1. By Theorem 2.5(c), f.},(G) = n. Then there exists a forcing
subset T" of S such that S is the unique minimum edge-to-vertex geodetic set of G containing 7" and
|T'| = n. Hence all the proper subsets of S having a single element, two elements, three elements,...,
n — 1 elements are contained in more than one minimum edge-to-vertex geodetic sets of G. Let F' be a
proper subset of S with cardinality n — 1. Let .S; and S be the two minimum edge-to-vertex geodetic

sets of GG containing F'. Since .S7 and S have n — 1 elements as common, the other nth element of Sy
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and S5 is also same. Thus we get more than one minimum edge-to-vertex geodetic set with the same
n independent edges, which is a contradiction to 7" is a forcing subset of S. Hence f.f (G) = n is not
possible. Thus ff (G) =n — 1. [

Theorem 2.18. For the complete bipartite graph G = K, ,(2 < m < n), f1(G) =n — 1.

Proof: Let X = {uy,us,...uy} and Y = {vy, ve, ...v;, } be a partition of G. Let S be a minimum edge-
to-vertex geodetic set of G. Then by Theorem 1.3, S = 51 U.Ss, where Sy consists of m — 1 independent
edges and S5 consists of n — m + 1 adjacent edges and |S| = n. We show that .} (G) =n — 1.

Case(i): Suppose that ff (G) < n — 2. Then there exists a forcing subset 7" of S such that S is the
unique minimum edge-to-vertex geodetic set of G containing 7" and |T'| < n — 2. Hence there exists at
least two edges z,y € S such that x,y ¢ T'. Let us assume that So = {ugvi1, Ukv2, -, UkVin—m-+1}-
Suppose that z,y € Si. Then x = w;v; and y = wvy, such that ¢ # [ and j # m. Now, S3 =
S — {z,y} U {ujvm, wv;} consists of m — 1 independent edges and n — m + 1 adjacent edges of
G and also containing 7. By Theorem 1.3, S3 is a minimum edge-to-vertex geodetic set of G, which
is a contradiction to T is a forcing subset of G. Suppose that z,y € S3. Let x = ugv;; and y =
upv. Let u;v; be an edge of Si. Now, join the vertices vj2, Vi3, ..., Uip—m+1 t0 u; . Now Sy =
S1 — {wiv; } U {ugon } U {uvj, wivie, wivgs, ... Ui —m+1 + consists of m — 1 independent edges and
n — m + 1 adjacent edges of G. By Theorem 1.3, S4 is a minimum edge-to-vertex geodetic set of G
containing 7', which is a contradiction. Suppose that z € S7 and y € S3. Let x = w;vj and y = uvy;.
Ss = S1 — {wiv;} U {wjon } U {ugvy, ugviz, ugvgs, ..., UiV —m+1} consists of m — 1 independent
edges and n — m + 1 adjacent edges of GG and also containing 7. By Theorem 1.3, S5 is a minimum
edge-to-vertex geodetic set of GG, which is a contradiction to that 7" is a forcing subset of G. Hence

(@) < n — 2is not possible.

Case(ii): Suppose that f(G) > n — 1. This implies that, by Theorem 2.5(c), f.}(G) = n. Then
there exists a forcing subset 7" of .S such that S is the unique minimum edge-to-vertex geodetic set of G
containing 7" and |T'| = n. Hence all the proper subsets of .S containing a single element, two elements,
three elements,..., n — 1 elements are contained in more than one minimum edge-to-vertex geodetic
sets of G. Consider a proper subset F' of cardinality n — 1( m — 2 independent edges and n — m + 1
adjacent edges). Since [} (G) = n , it is clear that the proper subset F' lies more than one minimum
edge-to-vertex geodetic sets of GG, say S7 and S3. Now S; and S5 have n — 1 elements in common.
This implies that the other n** independent edge of S and S, is also same. Thus we get more than one

minimum edge-to-vertex geodetic set of G with the same n independent edges which is a contradiction

to that T is a forcing subset of S. Hence [} (G) =n — 1. [ |
Theorem 2.19. For the complete graph G = K, (p > 4) with p even, f,(G) = %.
Proof: The proof is similar to the proof of Theorem 2.17. |

Theorem 2.20. For the complete graph G = K,(p > 5) with p odd, f},(G) = %.
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Proof: The proof is similar to the proof of Theorem 2.18. |
Theorem 2.21. For a non trivial tree of size ¢ > 2, f,(G) = 0.

Proof: Let GG be a tree of size ¢q. Then by Theorem 1.1, every pendent edge of GG belongs to every edge-
to-vertex geodetic set of G. But it is clear that, in a tree, the set of all pendent edges of G is the unique

minimum edge-to-vertex geodetic set of G. Now, it follows from Theorem 2.5(a) that ff (G) =0. R
Theorem 2.22. For astar G = K1 4, f,(G) = 0.
Proof: This follows from Theorem 2.21. |
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